This month only – get free shipping with no minimum purchase! Shop now
Find the perfect storage for your loved ones with our holiday gift guide! Shop now
Open

About RPM

Choosing High Performance Storage Isn’t Just About RPM

Looking for performance? Solid state hybrid drives make RPM largely irrelevant as a spec

Table of Contents

Higher revolutions per minute represent a faster hard drive, but the rate of media transfer is just as important for data storage solutions.

IBM gets the credit for inventing the concept of the hard disk drive (HDD) more than 50 years ago. Back then, HDD technology included washing machine-sized monstrosities with platters up to 14 inches in diameter spinning at a mere 1200 revolutions per minute (RPM).

Since then, the industry has experienced dramatic innovation. The physical footprint of hard drives has continued to decrease while storage density and performance have dramatically increased. But even as hard drive technology has matured, the way of measuring the performance of new hard drive models has remained relatively consistent and closely related to two specifications:

  • The density of bits storage on the circular platters—called areal density
  • The speed at which the platters rotate—called RPM

The performance of a hard drive is most effectively measured by how fast data can be transferred from the spinning media (platters) through the read/write head and passed to a host computer. This is commonly referred to as data throughput and typically measured in gigabytes (or gigabits) per second. In either case, data throughput is directly related to how densely data is packed on the hard drive platters and how fast these platters spin.

Comparing measurement methods

For the areal density specification, we can measure data density on a hard drive in two ways: bits per inch (BPI) and tracks per inch (TPI). As tracks are placed closer together, TPI increases. Similarly, as data bits are placed closer and closer to each other along a track, BPI increases. Together, these represent areal density.

As a rule, when areal density increases on a hard drive, so does data throughput performance. This is because the data bits pass by the read/write head of the hard drive faster, which leads to faster data rates.

rpm drive capacity

For the RPM specification, platters need to spin faster to increase performance in a hard drive. This results in moving the data bits past the read/write head faster, which results in higher data rates. Hard drives have been engineered with spin rates as low as 1200 RPM and as high as 15K RPM. But today’s most common RPM rates, in both laptop and desktop PCs, are between 5400 and 7200 RPM.

Given two identically designed hard drives with the same areal densities, a 7200 RPM drive will deliver data about 33% faster than the 5400 RPM drive. Consequently, this specification is important when evaluating the expected performance of a hard drive or when comparing different HDD models.

Solid state hybrid drives make RPM largely irrelevant

It’s no surprise that when many people begin evaluating the expected performance of the new solid state hybrid drive (SSHD) technology, they look at the RPM specification since an SSHD is basically an HDD with a bit of solid state technology integrated into the device. So RPM should still matter, right?

The truth is, RPM in an SSHD device is largely irrelevant. Here’s why:

SSHD design is based on identifying frequently used data and placing it in the solid state drive (SSD) or NAND flash portion of the drive. NAND flash media is very fast, partly because there are no moving parts—since it’s made of solid state circuitry. Therefore, when data is requested by host computers there is typically not a dependence on pulling this data directly from the spinning media in the hard drive portion.

Sometimes, however, data will be requested that is not in the NAND flash, and only during these instances does the hard drive portion of the device become a bottleneck. Since the technology is so effective at identifying and storing frequently used data in the NAND area, SSHD technology is much more efficient in delivering data to a host computer quickly.

This result can be clearly observed by comparing the PC Mark Vantage storage scores of second- and third-generation Seagate SSHD technology and traditional 5400 and 7200 RPM HDDs.

rpm drive capacity

Although third–generation SSHD technology is based on a 5400 RPM HDD platform, the technology actually delivers faster performance than the previous generation product based on a 7200 RPM HDD platform. Improvements in core SSHD technology and NAND flash systems explain such progress and also exemplify why RPM is no longer as meaningful when evaluating SSHD technology.

Summary

When maximizing the performance of your laptop computer, you don’t have to be bound by older storage technologies or performance criteria. Instead, let solid state hybrid drives take your digital lifestyle to a higher level.